Deniz Suyunu Dakikalar İçerisinde İçilebilir Hale Getirmek

DOI: 10.1016/j.memsci.2020.119028

    Dünya Sağlık Örgütü’ne göre dünya çapında yaklaşık 785 milyon insan temiz, içilebilir su kaynaklarına erişemiyor.

Yeryüzünün çok büyük bir miktarının su olmasına karşın çoğu deniz suyudur ve   tüm suların sadece %2,5 ‘ini tatlı sular oluşturur. Temiz içme suyu elde etmenin yollarından biri    deniz suyunu tuzdan arındırmaktır. Kore İnşaat Mühendisliği ve Yapı Teknolojisi Enstitü (KICT), deniz suyunu membran distilasyonu işlemi ile içme suyuna dönüştürebilmek için electrospun nanofiber membranın geliştirildiğini duyurdu

Membran distilasyonundaki en büyük sorun membranın ıslanmasıdır. Membran distilasyonu sırasında eğer membran ıslanır ise membran değiştirilmelidir. Özellikle uzun süreli işlemlerde   kademeli olarak membranın ıslandığı gözlemlenmiştir.  Eğer membran tamamen ıslanır ise sızmaya yol açtığı için distilasyonu verimi azalır.

KICT’de Dr. Yunchul Woo tarafından yönetilen bir araştırma ekibi, alternatif bir nano teknoloji yöntemiyle ‘co-axial electrospun nanofiber ‘ membran geliştirdi. Bu yeni, tuzdan arındırma teknolojisi dünyanın tatlı su kıtlığını çözme potansiyeline sahip. Geliştirilen bu teknoloji, ıslanma sorununu önleyebilir ve uzun vadede kararlılığı sağlayabilir. Daha yüksek pürüzlü yüzey ve dolayısıyla daha yüksek hidrofobiklik için membrandaki nanolifler tarafından üç boyutlu bir yapı oluşturulmalıdır.

Co-axial electrospinning tekniği, üç boyutlu yapılara sahip mebranları elde etmek için en uygun ve basit seçeneklerden biridir. Dr. Woo’nun araştırma ekibi, çekirdek olarak poli (viniliden florür-ko-heksafloropropilen) ve kılıf olarak düşük polimer konsantrasyonu ile karıştırılmış silika aerojel kullanarak bir co-axiel kompozit membran üretti ve bir süper hidrofobik membran yüzeyi elde etti. Aslında, silika aerojel, iletken ısı kayıplarının azalması nedeniyle membran distilasyonu işlemi sırasında artan su buharı akışına yol açan geleneksel polimerlere kıyasla çok daha düşük bir termal iletkenlik sergiledi.

Membran distilasyonu uygulamalarında electrospun nanofiber membranların kullanıldığı çalışmaların çoğu, yüksek su buharı akışı sağlamalarına rağmen 50 saatten daha kısa süre çalışmışlardır. Dr. Woo ‘nun araştırma ekibi ise co-axial electrospun nanofiber membranı kullanarak membran distilasyon işlemini 30 gün boyunca uyguladı.

Co-axial electrospun nanofiber membran, 30 gün boyunca %99,99 tuz reddi gerçekleştirdi. Sonuçlara göre, düşük kayma açısı ve ısıl iletkenlik özellikleri sayesinde membran ıslanma ve tıkanma sorunları olmadan iyi çalıştı. Sıcaklık polarizasyonu, membran distilasyonundaki önemli dezavantajlardan biridir. İletken ısı kayıpları nedeniyle membran damıtma işlemi sırasında su buharı akış performansını azaltabilir. Membran, düşük kayma açısı, düşük termal iletkenlik, sıcaklık polarizasyonundan kaçınma ve süper doymuş yüksek su buharı akışı performansını korurken az miktarda ıslanma ve kirlenme gibi birkaç önemli özelliğe sahip olduğundan, uzun vadeli membran distilasyonu uygulamaları için uygundur.

Dr. Woo’nun araştırma ekibi, membran distilasyon işleminde yüksek su akışı performansındansa önemli olanın daha kararlı bir sürece sahip olmak olduğunu belirtti.

Dr. Woo, “Co-axial electrospun nanofiber membranın, deniz suyu çözeltilerinin ıslanma sorunları yaşamadan arıtılması için güçlü bir potansiyele sahip olduğunu ve pilot ölçekli büyük ölçekli membran distilasyonu uygulamaları için uygun membran olabileceğini” söyledi.

 

 

Kaynak : phys.org  

3 Boyutlu yazıcılar için kimyasal direnci yüksek reçine üretildi

Alman bilim insanları 3 boyutlu yazıcıların verimini artırabilecek bir reçine elde ettiler.

3 boyutlu yazıcıların temel çalışma mantığı polimerlerin eritilip belirlenen yerlere katman katman döküldükten sonraki saniyelerde soğutulmasıdır. Burada önemli olan şey ise ısıtma sisteminin polimeri eritip tüpün içinde kolayca hareket edebilecek kadar akışkan ancak tüpün ucundan döküldükten sonra kolayca soğuyabilecek yoğunlukta ve sıcaklıkta yapabilecek kapasitesinin olmasıdır.

Reçine ise 3 boyutlu yazıcılar yoluyla bir ışık kaynağı altında sertleştirmek üzere tasarlanmış bir fotopolimer sıvı malzemedir. Yapılan çalışmada ise yeni üretilen reçinenin uygulandığı yüzeylerde foto-oksijenizasyon ve foto redoks uygulamalarının işe yaradığı gözlemlendi.

Foto-oksijenizasyon uygulaması bir ürüne ışığın yansıtılarak oksijeni ürünün yüzeyine yerleştirmek olarak tanımlanabilir. Foto redoks ise, bir ürünün yansıtılan ışığın enerjisini alarak 1 elektronunu ürün içerisinde hareket ettirmesini sağlayan bir olaydır.

İzosiyanat ve akrilat 

Köln Üniversitesinden Axel Grisbech, takımının geliştirdiği reçinenin, birçok katalizörün de yüzeyde kalmasını sağlayacak özellikte olduğunu ve aynı zamanda da kimyasal olarak dirençli olduğunu açıklıyor.

Bu iki olayın gerçekleşmesini kolaylaştıran reçine ise izosiyanat ve akrilattan oluşmaktadır. Sektördeki rakiplerinin organik çözücülere karşı dayanıksız olması bu reçinenin öne çıkmasını sağlıyor.

Reçine ısıtılıp ve ışık kaynağıyla soğutulup ürünü oluşturduktan sonra, yani baskı işleminden sonra, reçinedeki reaktif izosiyanat grupları ürünün yüzeyinde korunur ve sonradan işlevselleştirme uygulamasında kolaylık sağlar. Sonradan işlevselleştirme uygulaması,  hızlandırıcı reaksiyonları kolaylaştırabilecek maddeleri yüzeye sabitlemek için izosiyanat gruplarının 4-aminobenzofenon ile reaksiyona girmesidir. İşlem sonrası, izosiyanat gruplarını su ile reaksiyona sokarak, sonraki reaksiyonlara karşı en kararlı kimyasal bağlardan biri olan üre bağlarını oluşturur. Reçine bu sebepten ötürü kimyasal olarak dirençlidir.

Kimyasal direnç, şeffaflık ve sonradan işlevselleştirme olasılığı

Almanya, Heidelberg Üniversitesi’nden polimer kimyager Eva Blasco, ”Bu reçinenin en büyük başarısı üç önemli özelliğin birleşimidir: kimyasal direnç, şeffaflık ve sonradan işlevselleştirme olasılığı. Şu anda 3 Boyutlu baskı için kullanılan polimerlerin çoğu organik çözücülere karşı zayıf direnç gösterdiğinden, kimyasal direnç özellikle zordur. Ayrıca, sonradan işlevselleştirme olasılığı, sistemi daha çok yönlü hale getirir ve kimyasal sentez ve hızlandırmada kullanımı için yeni olanaklar açar.” şeklinde görüşlerini belirtiyor.

Annalisa Chiappone, aynı zamanda yüzey işlevselleştirmesinin ürünlerde oldukça arzu edilen bir özellik olduğunu belirtiyor. “Sonradan işlevselleştirme uygulaması, malzemeyi istenilen reaksiyon için uygun hale getiren, 3 boyutlu malzemeye çok iyi bir yönlülük sunan bir uygulamadır.”

Griesbeck ve arkadaşları,  diğer katalizörlerin reaksiyonları için mevcut çalışmalarını genişletmeyi planlıyor.

Gelecek senelerde 3 boyutlu yazıcılarımızdan daha çok verim elde etmek ümidiyle.


Kaynaklar

Hybrid resin offers new dimension in flow reactor printing | ChemistryWorld

From 3D to 4D printing: a reactor for photochemical experiments using hybrid polyurethane acrylates for vat-based polymerization and surface functionalization | pubs.rsc.org