Öğrenme beyinde nasıl gerçekleşir?

Yeni eğitim döneminin başlamasıyla tüm öğrencilerin aklında aynı sorular vardır bu dönem neler öğreneceğiz?  Bu soru cevaplanınca karşımıza birçok farklı cevap çıkar. Yeni öğreneceğimiz bilgiler için hafızamızı boşaltmamız gerekmez çünkü beynimiz telefon hafızası gibi değildir. İnsan hafızası için bilgisayara benzeterek bir tahminde bulunabiliyor. Yaklaşık 20 milyar civarındaki korteksimizde hücre var. Bunlar arasında trilyon kere bağlantı olursa yaklaşık 2,5 milyon GB hafızamız var.

Öğrenme olayı beynimizde nasıl gerçeleşir?

Öğrenme kısaca ‘’ bilginin kazanılması’’ olarak tanımlanabilir. Ancak okul, kitap, öğretmen, sınıf, sınav gibi sözcüklerle anlatılmak istenenden çok daha geniş bir anlam ifade eder.

Öğrenme; İnsanın bulunduğu çevreyi algılayabilmesi, çevredeki uyaranları, değişiklikleri fark edebilmesi ve bunlara uygun davranış ve tepkiler geliştirebilmesi becerisidir. Duygusal ve sosyal ve diğer birçok becerinin kazanılması öğrenme ile gerçekleşir.

Nörobilimsel olarak öğrenme; bilginin algılanması, kısa süreli bellek süreçlerinde işlenmesi, uzun süreli belleğe kaydı ve gereğinde geriye çağrılıp kullanılmasıdır. Öğrenme başta beyin olmak üzere sinir sisteminin bir fonksiyonudur. Öğrenme sinir sisteminin en küçük fonksiyonel birimi olan sinir hücrelerinde (nöronlarda) gerçekleşir.

Öğrenme, algılamanın ilk bölümü sonrasında beyinde gerçekleşir. Uyaranın (bilgi) bilinçli olarak algılanması, anlamlandırılması ve kaydedilmesi süreçleri (bellek) beyin hücrelerince (nöronlar) gerçekleştirilir. Beyin hücrelerine nöron (sinir hücresi) adı verilir. Nöronların uzun ve kısa uzantıları vardır. Uzun olan uzantılara akson, kısa olan uzantılara dentrit denir. Nöronlar (sinir hücreleri) bu uzantılar aracılığı ile birbirleri ile bağlantı kurarlar. Nöronların akson ve dentritlerinin birbirleri ile yaptıkları bu bağlantılara sinaps denir.

Öğrenme sürecinde duyu organlarından alınan uyarılar sinir hücrelerine (nöronlara) geldiklerinde, öncelikle nöronda uyarılma oluştururlar. Bu uyarılma, ilgili nöronlar arasında sinaptik aktiviteyi (bilgi alışverişini) arttırır. Öğrenme; hücresel düzeyde, nöronlar arasında ilişki kurulması yani sinaps oluşumu ile gerçekleşir. Uyaranlar, (bilgi) bu bağlantılar yoluyla nöronlar arasında transfer edilir ve öğrenme gerçekleşir. Öğrenmenin gerçekleşmesi için bilginin uzun süreli belleğe kaydı gerekir, bu kayıt için de sinapslarda bazı proteinlerin sentezi gerekir. Bu proteinler sinaptik bağlantıların kalıcı hale gelmesini sağlar.

Uzun süreli ve yineleyen ve belli şiddetin üzerindeki uyaran varlığında, uyarı nöronun çekirdeğine kadar ulaşır ve çekirdekte uyarılma oluşur. Nöron çekirdeğine ulaşan bu sinyallerle (uyarılar) nöronda protein sentezi gerçekleşir. Yani sinaptik protein sentezi, uyaranın nöronun çekirdeğini uyarması ile mümkündür. Günlük öğrenme pratiğinde bilginin veriliş şekli ve kalıcı öğrenme arasındaki ilişki, nöronal düzeyde bu mekanizma ile gerçekleşir. Yani bilginin yeterince güçlü verilmesi, nöronların çekirdek düzeyinde uyarılması, sinaptik protein sentezi ve kalıcı öğrenme ile sonuçlanır.

İnsan beyninde yaklaşık 100 milyar nöron bulunmaktadır. Nöronların da yaklaşık 15 milyarı beyin kabuğundadır. 15 milyar nöronun birbirleri ile oluşturacağı sinaps sayısı hesaplanamayacak kadar çoktur. Bu nedenle insanın öğrenme kapasitesi de ölçülemeyecek kadar büyüktür (ortalama 1000 tetrabyttır).

Yeni Bilgiler Öğrenirken Beynimiz Nasıl Değişir?

Beyinde uzun süreli işlevsel değişiklikler yeni şeyler öğrendiğimiz veya yeni bilgileri tekrar ederek kalıcı hale getirdiğimiz zaman meydana gelir. Beynin öğrenme ve değişme kapasitesi beyin plastisitesi ya da beyin esnekliği kavramı ile ifade edilir. Bu kavram özet olarak deneyimlerin beyindeki sinir yollarını yeniden nasıl düzenlediğini ifade eder.

Beyin esnekliğini zihnimizde oyun hamuru örneği ile somutlaştırabiliriz. Oyun hamuru ile bir pasta yaptığımızı düşünelim. Hamuru pasta haline getirebilmek için yuvarlamak, kenarlarından bastırmak, yeni hamur parçaları eklemek ve çıkarmak gerekebilir. Böylece hamurun şekli değişir. Benzer şekilde beyindeki sinir bağlantıları da deneyimlerimize veya duyusal tepkiye yanıt olarak yeniden düzenlenebilir.

Beyin esnekliği yaşam boyu gerçekleşen bir süreçtir ve birçok beyin hücresi bu sürece katılır. Beyin bireyin ömrü boyunca gelişir ve değişir. Ancak bu değişimler yaşamın belirli dönemlerinde daha baskın görülürken bazı dönemlerde etkisi azalabilir. Beyin esnekliği genetik faktörlere bağlıdır, ancak çevre şartlarından da etkilenebilir.

Bir bilginin öğrenilmesi sırasında beyinde oluşan değişiklikleri görebilmek için farklı yöntemler kullanılır. Bunlardan en yaygın olanı fMRI (işlevsel manyetik rezonans görüntüleme) yöntemidir. Bu cihaz beyinde kan akışında oluşan değişiklikleri tespit eder. Yeni bir şey öğrenirken beynin hangi bölgelerinde kan akışının arttığı yani beynin hangi bölgelerinin etkin olduğu bu yöntemle belirlenebilir.

Öğrenme sürecinde pratik yapmak yani tekrar, edinilen bilgilerin ya da becerilerin kalıcı olmasındaki en önemli aşamadır. Bir bilgiyi ya da davranışı tekrar etmek onu daha kolay hatırlamamızı ya da gerçekleştirmemizi sağlamanın yanı sıra beynimizi de değiştirir.

Öğrenme Sırasında Beynin Hangi Hücreleri Değişir?

Nöronlar beyindeki en bilinen hücrelerdir. Ancak gliyal olarak isimlendirilen hücreler beyindeki hücrelerin yaklaşık yarısını oluşturuyor. Gliyal hücrelerinin temel işlevinin nöronları bir arada tutmak olduğu düşünülüyordu. Ancak son yıllarda yapılan bir araştırma gliyal hücrelerinin de öğrenme sürecinde etkili olduğunu gösteriyor.

Nöronlar gliyal hücreleri tarafından çevrelenir ve korunurlar. Gliyal hücreleri sinir aksonlarının etrafını sarar. Bu yapı miyelin kılıfı olarak isimlendirilir. Protein ve yağdan oluşan miyelin kılıfı aksonların çevresinde yalıtım sağlar. Böylece sinir uyarılarının iletimini hızlandırır.

ABD Ulusal Sağlık Enstitüsü araştırmacılarından R. Douglas Fields, yeni becerilerin öğrenildiği sırada bir aksonun etrafında yalıtım sağlayan miyelin miktarının arttığını buldu. Bu değişim tek bir gliyal hücresinin büyüklüğünün artması ve kılıfsız aksonlara yeni gliyal hücrelerinin eklenmesi şeklinde gerçekleşebiliyor. Bu değişiklikler bir nöronun sinyal iletme yeteneğini geliştirerek daha iyi öğrenmeye yol açar.

Öğrenme sürecini inceleyen farklı bilim insanlarının çalışmalarından yapılacak ortak bir çıkarıma göre bilgiyi daha uzun süreye yayarak, parçalara bölerek ve belirli aralıklarla tekrarlayarak kalıcı hale getirebiliriz. Böylece beynimize yeni bilgilerin beynimizdeki hücrelerde kalıcı hale gelmesi için yeterli imkânı verebiliriz.

İnsan Hafızası Nasıl Çalışır?

Çoğumuz hafızayı, beynimizin içinde bilgilerin saklandığı bir depo gibi algılarız. Oysa bilim insanları hafızanın bundan çok daha karmaşık olduğu görüşündeler. Onlara göre hafıza bir depodan çok bir işlemler zinciri. Zihnimizde gerçekleşen fark etme-kaydetme-hatırlama ve unutmayla ilgili bölümlerden oluşan bir zincir.

Hafızanın oluşmasında ilk adım kodlamadır. Kodlama seçici dikkatle başlar. Beyin ve düşünce sistemimiz dışarıdan gelen sınırsız sayıda uyarıya açık olmasına rağmen bu verileri kodlarken her veriye aynı işlemi yapmaz. Bilim insanları hafızayı hiç silinmeyecek biçimde kodlamak için her şeyden önce çok dikkat etmemiz gerektiğini söylüyorlar. Bir şeye ne kadar yoğunlaşırsak onun beynimize kodlanması da o kadar sağlam olur.

Bilgi ne kadar sık tekrarlanır ya da kullanılırsa hafızada kalıcı bir yer etmesi o kadar kolaylaşır. Uzun süreli hafızamız, sınırsız ölçüde bilgiyi çok uzun süre saklayabilir. Beynimizde bulunan nöronların tamamı birbirlerine bağlı değildir. Bu bağlantıların çoğunu  biz kendimiz geliştiririz. Bunun yolu, bilgilerin birbirleriyle ilişkilendirilmesidir. Bir beyin hücresi bir diğerine sinyal gönderirken ikisi arasında bir yol oluşur, eğer insan bunu tekrar ederse bu yol kalıcı olur. İki hücre arasındaki sinyal alışverişi ne kadar artarsa aralarındaki bağ da o kadar kuvvetlenir.

Çok kullanılan bağlantılar hatırlamayı kolaylaştırır. Ama konudan uzaklaştığımızda -dolayısıyla bağlantılar arası sinyal alışverişi durduğunda-  beynimiz bir süre önce çok iyi bildiği bir şeyi unutmaya başlar.  Kullanılmayan bağlantılar zayıflayarak kopar. Hatırlamakta güçlük çektiğimiz bilgiler, büyük oranda biz onları gündelik hayatımızda canlı tutmadığımız, yeterince kullanmadığımız için silinmeye başlamışlardır.

Biz yeni bir bilgiyi öğrenip tekrar ettikçe sadece bilgileri hatırlamamız kolaylaşmaz, beynimizdeki karmaşık hafıza devreleri de yapılanır ve zihnimizin performansı artır. Düşündüğümüz, hatırladığımız her şey zihnimizdeki bağlantıları derinleştirir. Biz düşündükçe, hatırladıkça her yeni tecrübeyle beynimizin fiziksel yapısı da değişir.  Ne kadar çok düşünür, analiz eder, yeni bağlantılar kurarsak beynimiz de o ölçüde güçlenir.

Kaynak:

Beynimiz Nasıl Öğrenir?

https://bilimgenc.tubitak.gov.tr/makale/yeni-bilgiler-ogrenirken-beynimiz-nasil-degisiyor

İnsan Hafızası Nasıl Çalışır?

3 Boyutlu yazıcılar için kimyasal direnci yüksek reçine üretildi

Alman bilim insanları 3 boyutlu yazıcıların verimini artırabilecek bir reçine elde ettiler.

3 boyutlu yazıcıların temel çalışma mantığı polimerlerin eritilip belirlenen yerlere katman katman döküldükten sonraki saniyelerde soğutulmasıdır. Burada önemli olan şey ise ısıtma sisteminin polimeri eritip tüpün içinde kolayca hareket edebilecek kadar akışkan ancak tüpün ucundan döküldükten sonra kolayca soğuyabilecek yoğunlukta ve sıcaklıkta yapabilecek kapasitesinin olmasıdır.

Reçine ise 3 boyutlu yazıcılar yoluyla bir ışık kaynağı altında sertleştirmek üzere tasarlanmış bir fotopolimer sıvı malzemedir. Yapılan çalışmada ise yeni üretilen reçinenin uygulandığı yüzeylerde foto-oksijenizasyon ve foto redoks uygulamalarının işe yaradığı gözlemlendi.

Foto-oksijenizasyon uygulaması bir ürüne ışığın yansıtılarak oksijeni ürünün yüzeyine yerleştirmek olarak tanımlanabilir. Foto redoks ise, bir ürünün yansıtılan ışığın enerjisini alarak 1 elektronunu ürün içerisinde hareket ettirmesini sağlayan bir olaydır.

İzosiyanat ve akrilat 

Köln Üniversitesinden Axel Grisbech, takımının geliştirdiği reçinenin, birçok katalizörün de yüzeyde kalmasını sağlayacak özellikte olduğunu ve aynı zamanda da kimyasal olarak dirençli olduğunu açıklıyor.

Bu iki olayın gerçekleşmesini kolaylaştıran reçine ise izosiyanat ve akrilattan oluşmaktadır. Sektördeki rakiplerinin organik çözücülere karşı dayanıksız olması bu reçinenin öne çıkmasını sağlıyor.

Reçine ısıtılıp ve ışık kaynağıyla soğutulup ürünü oluşturduktan sonra, yani baskı işleminden sonra, reçinedeki reaktif izosiyanat grupları ürünün yüzeyinde korunur ve sonradan işlevselleştirme uygulamasında kolaylık sağlar. Sonradan işlevselleştirme uygulaması,  hızlandırıcı reaksiyonları kolaylaştırabilecek maddeleri yüzeye sabitlemek için izosiyanat gruplarının 4-aminobenzofenon ile reaksiyona girmesidir. İşlem sonrası, izosiyanat gruplarını su ile reaksiyona sokarak, sonraki reaksiyonlara karşı en kararlı kimyasal bağlardan biri olan üre bağlarını oluşturur. Reçine bu sebepten ötürü kimyasal olarak dirençlidir.

Kimyasal direnç, şeffaflık ve sonradan işlevselleştirme olasılığı

Almanya, Heidelberg Üniversitesi’nden polimer kimyager Eva Blasco, ”Bu reçinenin en büyük başarısı üç önemli özelliğin birleşimidir: kimyasal direnç, şeffaflık ve sonradan işlevselleştirme olasılığı. Şu anda 3 Boyutlu baskı için kullanılan polimerlerin çoğu organik çözücülere karşı zayıf direnç gösterdiğinden, kimyasal direnç özellikle zordur. Ayrıca, sonradan işlevselleştirme olasılığı, sistemi daha çok yönlü hale getirir ve kimyasal sentez ve hızlandırmada kullanımı için yeni olanaklar açar.” şeklinde görüşlerini belirtiyor.

Annalisa Chiappone, aynı zamanda yüzey işlevselleştirmesinin ürünlerde oldukça arzu edilen bir özellik olduğunu belirtiyor. “Sonradan işlevselleştirme uygulaması, malzemeyi istenilen reaksiyon için uygun hale getiren, 3 boyutlu malzemeye çok iyi bir yönlülük sunan bir uygulamadır.”

Griesbeck ve arkadaşları,  diğer katalizörlerin reaksiyonları için mevcut çalışmalarını genişletmeyi planlıyor.

Gelecek senelerde 3 boyutlu yazıcılarımızdan daha çok verim elde etmek ümidiyle.


Kaynaklar

Hybrid resin offers new dimension in flow reactor printing | ChemistryWorld

From 3D to 4D printing: a reactor for photochemical experiments using hybrid polyurethane acrylates for vat-based polymerization and surface functionalization | pubs.rsc.org